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Tetrahydroisoquinoline and tetrahydfeearboline ring systems Sphemesl- AFproaches to Catalysis of Enantioselective
F : ;i Pictet—Spengler Reactions
are core structural glement§ in .natu.ral an.d synthetlc. organic A. The Pictet-Spengler reaction
compounds possessing a wide diversity of important biological

activities! The Pictet-Spengler reaction, involving the cyclization O/\/NVR _chiral catalyst? { |

of electron-rich aryl or heteroaryl groups onto imine or iminium AP R7S NH
electrophiles (Scheme 1A), represents an established biosynthetic R
pathway and the laboratory method of choice for the preparation B. The acyl-Pictet-Spengler reaction Oc_R" x-

of these structural motifs. Enantioselective variants of this Ne R j’\

transformation would be valuable, both for accessing useful chiral O/\’ T RX z | Ny R
building blocks and in complex alkaloid synthesis. A number of AP R'\ ' chiral catalyst?
elegant diastereoselective methods, including substrate-controlled ¥ —HX
Pictet-Spengler cyclization%,> have been developed to access this =

important class of compoundsEnantioselective, catalytic ap- % | N _R"
proaches have, for the most part, been restricted to asymmetric R A
R O

hydrogenation of cyclic imines accessed by Bischapieralski their application in the activation df-acyliminium ions. Limited

= : . .
reaction: The only reported example of a chiral Lewis acid precedent exists for such an approach: the enantioselective acyl-

_me_dlated_ Plctets_pengler reactlo_n requires the use of SuPerStq' cyanation of quinolines (Reissert reaction) discovered by Shibasaki
ichiometric quantities of an enantioenriched boron reagent, and its .

. - . . . is the only repor xample dFacyliminium ion activation
scope is restricted td\s-hydroxytryptamine-derived nitronés. :htir; Zatglyzzg ted example bkacy um fon activation by a
Herelln, we repprt asymmetnc .catellly5|s of thg gcyl-P«:@engler Preliminary screening experiments along these lines unearthed
reaction by chiral th_|oure_a dc_erlvatlves,_ prowdl_ng access to a range promising results: tryptamine-derived imi@aunderwent cycliza-
of N-acetyl -carbolines in h_|gh enantloselect_mes. . . tion in the presence of acetyl chloride, 2,6-lutidine, and catalyst

Thc_a challenge of devel_oplng an asymmetric ce_ltalytlc yanant of 1ain diethyl ether at-30 °C to provide theNs-acetyl-tetrahydro-
the Pictet-Spengler reaction appears to be associated with the low f-carboline3ain 59% ee (Table 1). This lead result emerged from
reactivity of the imine substrate. Most often, strong Brgnsted acids

) ) careful evaluation of each of the reaction parameters: the reaction
are employed to promote the racemic pathway; the few reported o5 iigselectivity exhibited a strong dependence upon the structure
examples of Lewis acid catalysis involve highly reactive agents

o . . . ) ' of the acylating agerif, as well as the reaction solvent and
unmodified by donor ligand$In addition, high reaction temper- temperaturé® Taking advantage of the modular structurelat

atures are often required. We were thus not surprised to disCoverye jnyestigated catalyst optimization. Substantial variation of the
that a screen of potential chiral catalysts for this transformation diaminocyclohexane-derived portion of the catalyst was tolerated:
did not afford any useful leads: all compounds tested were inactive 4, example, catalystb, in which the salicylaldimine moiety was
except at high temperatures, and no enantiomerically enriched gp|aced by a bulk-pivaloyl amide, imparted enantioselectivity
products were obtained under any conditiéh$hese results led  gjmilar to that obtained usinga. Catalystlc, containing a 2,5-
us to conclude that the exploration of more reactive variants of the dimethylpyrrole group, afforded an especially promising result,
Pictet-Spengler reaction, which could proceed under relatively mild \yhich could be improved dramatically by tuning of the pyrrole
conditions, might be key to the development of an enantioselective, sypstituentd? Unsymmetrically substituted 2-methyl-5-phenylpyr-
catalytic process. role derivativeleemerged as a highly efficient catalyst, providing
A general strategy for enhancing the reactivity in processes the cyclization product in 93% ee. Fine-tuning of the amide moiety
involving imine or iminium intermediates involves generation of demonstrated that the,N-diisobutyl amidelf was optimal across
the correspondingN-acyliminium ions!! These highly active a wide range of imine substrat&s.
electrophiles form the basis for a wealth of useful synthetic  This new methodology provides access to a range of substituted
transformations, and their application in variants of the Pietet  tetrahydrog-carbolines in high enantiomeric excess (Table 2).
Spengler reaction has been known for some fifiéle chose to Imines obtained by condensation of tryptamine with 1.05 equiv of
investigate the possibility that the acyl-Pict&pengler reaction  aldehyde may be used without further purification, and the yields
might be amenable to catalysis by a relatively mild Lewis or of cyclized products for the two-step procedure are generally good.
Bronsted acid catalyst (Scheme EBRecent results from our group  Variation of the indole moiety is also tolerated; the ability to access
have demonstrated that chiral thiourea catatyatand related products bearing methoxy groups at the 5- or 6-position is
compounds promote highly enantioselective additions of nucleo- particularly significant in light of the ubiquity of these substitution
philes toN-alkyl** andN-tert-butoxycarbonyl (Boc) imine¥ The patterns in indole alkaloids. Limitations of the current system
ability of these catalysts to activate such electronically distinct imine include substrates derived from aromatic aldehydes or trimethy-
derivatives with high enantioselectivity prompted us to investigate lacetaldehyde, which display lower reactivify.
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Table 1. Optimization of Catalyst Structure

tBu S
MezN RZNW(.\N)LN\
Na 0 H f-‘l No _R"
R
~T
1c: R=CH;, R=R"=CH;
1d: R=CHs, R'=R" = Ph
1e: R=CHj, R'= CH;3, R"= Ph
MezN N\. 1f: R = i-Bu, R' = CH,, R" = Ph
HN t-Bu

T

AcCl (1.0 equiv.)

2,6-lutidine (1.0 equiv.)
catalyst (10 mol%)

W a0
N NAc
N -
N N

3a

CH(CH.CH3); Et,0, -78°C — -30°C CH(CH,CHy),
catalyst yield (%) ee (%)°
la 65 59
1b 45 61
1c 65 77
1d 55 71
le 70 93
1if 70 93

aDetermined by HPLC using benzophenone as an internal quantitative
standard, from reactions carried out on a 0.1 mmol sédetermined by
HPLC (Pirkle §,9-Whelk-01 column, 10% ethanol/hexanes).

Table 2. Asymmetric Acyl-Pictet—Spengler Reactions Catalyzed
by 1f

1) R'CHO (1.05 equiv.)

5@\7/\/'\“-{2 3A MS or NapSOy 52 | |
N i
N | \ l 2) AcCl (1.0 equiv.) N NAc
H 2,6-lutidine (1.0 equiv.) H R
1f (5-10 mol%)
Et,0, -78°C > T°C
product R R T(°C) yield (%) ee (%)°
32 H CH(CH,CHa)2 -30 65 93
3b H CH(CH)2 —40 67 85
3c H n-CsH1q —60 65! 95
3d H CH,CH(CHg)2 —60 75 93
3e H CH,CH,OTBDPS  —60 7" 90
3f 5-MeO  CH(CHCHs), —40 8r 93
39 6-MeO  CH(CHCHs), -50 76 86

a|solated yield over two steps after chromatography, from reactions
performed on a 0.25 mmol scakEnantiomeric excess by HPLC using
commercially available chiral columns (see Supporting Information for
details). The absolute configuration of produgtsand3d was determined
by deacetylation to the corresponding known tetrahythaarbolines with
lithium amidotrihydroborate. Other assignments are by anafoiggrformed
with 5 mol % catalystd Performed with 10 mol % catalyst.

The ability to activate a weakly Lewis baditacyliminium ion
toward enantioselective transformations using a chiral hydrogen
bond donor presents new opportunities for catalysis and raises
intriguing questions as to the nature of this interaction. Our current
efforts include examination of the mechanism of this transformation,
further exploration of the reaction scope, and application of the
enantioselective PictetSpengler reaction in indole alkaloid syn-
thesis.
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